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Abstract

Memory-corruption-based return address hijacking, such as Return-
oriented Programming (ROP), is a prevalent attack technique that
compromises the program’s control flow integrity. So far, software-
based defenses against these attacks either introduce heavy perfor-
mance overhead or trade-off security for performance. Meanwhile,
some hardware-assisted defense mechanisms are not practical for
large-scale deployment due to additional requirements of hardware
features and flaws caused by complicated design.

In this paper, we present RETTAG, a hardware-assisted and crypto-
based defense scheme on RISC-V architecture that leverages Pointer
Authentication Code (PAC) embedded into the unused bits of func-
tion return address to ensure return address integrity. We extend
RISC-V ISA with Return Address Authentication (RAA) instruc-
tions to generate the PAC efficiently. We integrate RETTAG into the
mainstream compilers GCC and LLVM to help developers transpar-
ently employ the defense and implement a prototype of RETTAG on
the Rocket emulator and FPGA development board to demonstrate
its effectiveness by detecting various ROP attacks. Moreover, the
performance evaluation shows that RETTAG only introduces 0.11%
performance overhead on NBench and 7.69% on Coremark.
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1 Introduction

Memory-corruption-based return address hijacking attacks, such
as Return-oriented Programming (ROP) [10, 38], exploit memory
vulnerabilities to hijack a program’s control flow by overwriting
function return addresses in memory. Attackers construct gadgets
from existing code and chain them via return instructions by a
carefully crafted stack. Since the gadgets are made by existing
code, these attacks can bypass the traditional WEPX defense policy,
which prevents writable memory execution.

Stack Canary [16] and Shadow Stack [14, 18, 19, 43] are widely
deployed methods to mitigate buffer-overflow attacks. Stack Ca-
naries protect against sequential overwrites of return addresses by
storing special values in stack frames. The program checks canary
values before returns. However, these values are stored in insecure
memory, where an attacker can read or overwrite them. Thus, it
can be reliably bypassed [9, 23]. Shadow stacks store the return
addresses in a separate, isolated region of memory that is not ac-
cessible by the attacker. Upon returning, the integrity of the return
address is checked against the copy on the shadow stack. However,
it is difficult to guarantee the security of the memory isolation in
actual deployment. It has been proven that various technologies
can bypass them in real-world scenarios [25, 30, 39].

Control-flow Integrity (CFI) [6] is another prominent defense
technique. It guarantees a trusted process by limiting control flow
to the original Control Flow Graph (CFG). Software-based CFI [12,
15, 17, 22, 31, 34, 44, 46] leverages compile-time instrumentation
and runtime monitoring to achieve integrity. Unfortunately, due
to the high performance overhead introduced by instrumentation
and monitoring, researchers have to use coarse-grained approaches
(e.g., adopting a more permissive policy for return instructions,
rather than tracking the return addresses precisely) to trade off se-
curity for performance [12, 15, 22, 44, 46]. Moreover, even the fine-
grained approaches are also proved to be vulnerable [34]. In con-
trast, hardware-assisted CFI [27, 35, 36, 45] offers a strong security
guarantee at a negligible overhead. However, the hardware-assisted
approaches have to face some limitations. First, the requirement
of additional hardware components introduces implementation
difficulty on Commercial Off-The-Shelf (COTS) devices [27, 36].
Second, the design of some hardware-assisted approaches [35, 45]
is complicated, which makes them not practical to be deployed on
COTS devices and increases the risk of potential vulnerabilities.

To overcome these limitations, we design a simplified and effi-
cient return address authentication mechanism on RISC-V architec-
ture [40]. RISC-V is an open and free Instruction Set Architecture
(ISA). The open nature of RISC-V allows the developers to design
and implement customized hardware features, which further helps
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to deploy our protective mechanism. There are two paged virtual-
memory schemes in 64-bit RISC-V architecture: Sv39 and Sv48 [41]
with supporting a 39-bit and 48-bit virtual address space, respec-
tively. In other words, not all bits are used as a valid virtual address
in a 64-bit architecture. Consequently, we utilize the unused bits
of the pointer to store authentication code rather than memory,
which improves the performance and reduces the attack surface.

Moreover, it requires no additional hardware components, making

it capable of large-scale deployment.

In this paper, we present RETTAG, a hardware-assisted and crypto-
based defense scheme that uses Pointer Authentication Code (PAC)
embedded into the unused bits of function return address to protect
return address integrity on RISC-V. Specifically, we extend RISC-V
ISA with additional Return Address Authentication (RAA) instruc-
tions and efficiently authenticate function return addresses before
being used as the returning targets. Furthermore, to transparently
embed our defense scheme in the applications, we integrate RET-
TAG into mainstream compilers including GCC and LLVM, and the
defense is enabled automatically at the compile time. RETTAG is
deployed on the Rocket emulator and FPGA development board and
tested with benchmarks to evaluate its effectiveness and efficiency,
and the details will be discussed in Section 6.3.

In summary, we make the following contributions:

e We introduce a hardware-assisted defense scheme that uses PAC
embedded into the unused bits of return address to protect return
address integrity on RISC-V.

e We further integrate RETTAG into mainstream compilers includ-
ing GCC and LLVM, and the application developer can enable
the defense scheme at the compile time.

e We test RETTAG with 3 popular benchmarks, and the evaluation
result shows that RETTAG is capable of detecting various buffer-
overflow attacks with a reasonable overhead.

e We open-source the code of RETTAG on github.com/Compass
-All/RetTag.

2 Related work

Shadow stack is widely deployed to enforce return address integrity.
There are two shadow stack designs. Parallel shadow stacks [18]
place shadow stack entries at a constant offset from the program
stack. It’s efficient but suffers from high memory overhead, compat-
ibility problems, and low security. Compact shadow stacks [11] ded-
icate a general-purpose register to store the shadow stack pointer.
Although it reduces memory overhead and shows reasonable perfor-
mance, it still can be inferred the location of the shadow stack by ex-
ploiting memory vulnerabilities [28]. Hardware support for shadow
stacks Intel Control-flow Enforcement Technology (CET) [1] uses a
new extension to page permissions to protect a copy of the return
address pointer. It offers greater security and performance. Never-
theless, the new page attribute might be modified like the similar
approach in Data Execution Prevention (DEP) [26]. Besides, such a
custom hardware mechanism incurs development and deployment
costs. The main challenges of shadow stack are the memory over-
head and requiring memory isolation. Compared to them, RETTAG
makes use of the unused bits of pointers to store return addresses’
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authentication codes without requiring additional memory or hard-
ware resources. It effectively decreases the overhead and reduces
the attack interfaces while facing the challenge of reuse attacks.

Cryptographic Control Flow Integrity (CCFI) [31] uses Message
Authentication Codes (MACs) to protect control flow elements such
as return addresses. However, it faces the problem of reuse attacks,
where the adversary can reuse previously observed valid MACs.
Compared to CCFI, RETTAG provides better performance and is
able to resist reuse attacks.

ARMv8.3 architecture introduces a dedicated Pointer Authen-
tication (PA) [37] mechanism to protect the integrity of pointers.
However, the COTS devices armed with the architecture are lim-
ited. To the best of our knowledge, the only COTS processors with
ARMVS.3 are the most recent Apple processors, and the ARM Cor-
tex series are not updated to ARMv8.3. Furthermore, current PA
schemes are vulnerable to reuse attacks.

PARTS [27] implements compiler instrumentation that integrates
PA-based defenses to protect all code and data-pointers at runtime.
PARTS claims that a unique function id is used as part of the PA
Modifier for each code pointer. Nevertheless, it is not completely
unique in the implementation of PARTS, which exposes an attack
surface for pointer reuse attacks. Compared to PARTS, RETTAG
improves the implementation of PAC generation (see Section 5.1.2).
Moreover, RETTAG is implemented with real hardware on an FPGA
development board, while PARTS is only developed on a simulator.

PACStack [28] re-purposes the ARM PA instructions to create a
MAC chain of function return addresses. They use a Chain Register
(CR) to store PAC values generated from the previous CR values and
the return address. Similar to PACStack, Zipper Stack [26] presents
a lightweight mechanism to protect return addresses against reused
attacks, which authenticates all return addresses by a chain struc-
ture using cryptographic MACs. However, it depends on the FILO
sequence of the stack. When this sequence is destroyed, it needs to
backup and restore the delicate register frequently. Compared to
Zipper Stack, RETTAG requires no additional operations.

3 Threat Model and Design Goal

Similar to other RISC architectures, RISC-V has a dedicated ra reg-
ister that stores current return address. The ra register is generally
set during regular and indirect function calls. Because the ra regis-
ter is overwritten on call, non-leaf functions must store the return
address onto the stack. While the return address is saved on the
stack in a nested function, an attacker can exploit a stack overflow
vulnerability to overwrite return address and subsequently redirect
the control flow to attacker-chosen locations. Such control-flow
attacks remain a prominent threat against computer systems. Some
works [20, 24] have proved that they can implement ROP attacks
on the new RISC-V architecture. To prevent these attacks, return
addresses must be protected when stored on the stack.

In this work, we consider an adversary that performs attacks
consistent with what we discussed before. The attacker corrupts
return addresses on the stack by exploiting stack overflow vulner-
abilities and subsequently redirects the program control flow to
attacker-chosen locations. Since it is technically possible to control
PAC generation from a high privilege level (i.e., kernel), we consider
this is out of the scope for RETTAG and limit the attacker to user



space. Furthermore, cryptanalysis attacks based on known PAC
values and side-channel attacks are out of the scope as well.

Our goal is to thwart attackers who corrupt function return
addresses on the stack to control the program flow. We specify the
following design goals for our defense scheme.

e GI:Return address integrity: Ensure function return addresses
on the stack remain unchanged.

o G2: Resistance against reuse attacks: Resist PAC reuse attacks.

e G3:High performance: Minimize performance and memory over-
head.

4 Design

4.1 Overview

Figure 1 shows the overall architecture of RETTAG. RETTAG is a
hardware-assisted and crypto-based defense scheme that consists
of two parts, RETTAG-enabled RISC-V platform (showing on the
bottom of the Figure 1) and RETTAG-enhanced compiler (showing
on the top of the Figure 1). The gray area in the Figure 1 shows the
modified component in our architecture design.
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Figure 1: Architecture Overview of RETTAG.

Among them, RETTAG-enabled RISC-V platform is used to sup-
port RAA instructions. Specifically, we extend RISC-V ISA with
dedicated RAA instructions that authenticate function return ad-
dresses. RETTaGg-enhanced compiler is responsible for generating
the protected binary during compiling. Detailedly, it analyzes the
Intermediate Representation (IR) and uses compiler-level instrumen-
tation to transparently add RAA instructions when return address
is saved into or restored from the stack.

4.2 RAA instructions

We use PACs as the ciphertext of the return addresses to protect
them. For creating and verifying PACs efficiently, we extend RISC-V
ISA with RAA instructions, which are a set of pac and aut instruc-
tions. Among them, pac is an instruction that creates a PAC of the
return address when the protected program calls a function. aut
is an instruction to calculate a new PAC and verify it at the end
of the function call. If the new PAC matches the original one (i.e.,
verification is successful), it will delete the PAC and subsequently
function returns as expected. Otherwise, it will trigger an interrupt
and terminate the process execution.

Figure 2 shows the generation and storage of PACs in RETTAG.
For the return address, va_size is the valid virtual address size,
which depends on the paged virtual-memory schemes. RETTAG
calculates the PAC over the virtual address, a 128-bit key, and a
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64-bit modifier that is used as a tweak. After generating the PAC,

RETTAG stores it on the top unused bits of the return address.
63 48 va_size 0

RctumAddrcss‘ PAC ‘ ‘ Vitrual Address

128-bit RAA Key }—l

Figure 2: Generation and Storage of PAC.

64-bit Modifier

Generation. As mentioned in [27, 28], the attacker can perform
PAC reuse attacks by substituting an authenticated pointer with
another one using the same modifier. Thereby, a unique PA modifier
can effectively prevent authenticated pointers from being arbitrarily
interchangeable with a malicious one. According to these, RETTAG
generates PAC by using 1) the value of return address, 2) a 128-bit
RAA key and 3) a 64-bit modifier, which are shown in Figure 2. The
RAA key is fixed in read-only memory by vendors and protected by
hardware. Thus, the attackers cannot obtain the key. Furthermore,
the key is unique among different devices. The 64-bits modifier
contains two parts: the 32-bit SP value and the 32 most significant
bits of the function-specific id. Specifically, the function id is a
compile-time nonce, which is unique for each function. Note that
only function id as the tweak is not enough. The same modifier
will be generated when a function is called by different callers.
Thus, the SP value is used as part of the tweak to distinguish callers
with different stack layouts effectively. The unique modifier further
defends against the PAC reuse attacks.

Storage. For storing PAC securely and efficiently, we use the
unused bits of the return address to store PAC. There are two
advantages of using unused bits rather than some other technolo-
gies (e.g., Shadow Stack). First, compared to shadow stack, storing
PAC in the unused bits will not introduce any additional memory
requirements, reducing the attack surface. Moreover, doing oper-
ations on unused bits is reached by accessing the registers. That
means that reading and writing PAC to unused bits introduces less
performance overhead than some memory-based technologies. As
PAC is stored in the unused bits of the return address, the security
provided by PAC is partly affected by the size of the unused bits.
A longer PAC provides a stronger security guarantee since it in-
creases the difficulty of brute-forcing the PAC. For supporting both
two paged virtual-memory schemes, we use the upper 16 bits of
the return address to store PAC. Theoretically, the attacker with

log(1-p)
Tog(1-2-16)
protection for Sv39 or Sv48. Additionally, the size of the PAC can
be extended to 25 bits at most on Sv39 to guarantee more security.

probability p needs guesses, which provides adequate

4.3 Compiler-level Instrumentation

In RETTAG, when function return addresses are pushed into or
restored from the stack, the program should be instrumented with
the aforementioned RAA instructions to create or authenticate PAC
correspondingly. A prologue is a set of instructions that prepare the
stack and store the return address on the stack at the beginning of a
function. In contrast, an epilogue is a set of instructions to restore
the stack and registers at the end of a function. Therefore, RETTAG
inserts the pac instruction to create PAC before the return address
is pushed into stack in function prologue and aut instruction to
verify PAC after the return address is restored from the stack in



function epilogue. In this case, we ensure the return address is
authenticated when being used as the target of a function return.

Function:

Prologue:
lui tmp, func-id[0:19]
addi tmp, tmp, func-id[20:31] @ get 32-bit function-id
s1lli tmp, tmp, 0x20
add tmp, tmp, sp @ get modifier
pac ra, ra, tmp ® PAC generation
Function body
Epilogue:
lui tmp, func-id[0:19]
addi tmp, tmp, func-id[20:31] @ get 32-bit function-id
slli tmp, tmp, 0x20
add tmp, tmp, sp ® get modifier
aut ra, ra, tmp ® PAC authentication

ret

Listing 1: Instrumented Assembly Instruction by RETTAG.

Listing 1 shows the instrumented assembly instruction by RET-
Tac. When a function is called, PAC generation instructions are
executed instantly in the function prologue. The 32 most significant
bits of function-id and current stack pointer are used to compose a
64-bit modifier (D, @). Subsequently, the program executes a pac
instruction to generate PAC and store it in the unused bits of the
return address (®). Thus, the return address tagged with PAC is
pushed into the stack.

Before the function return, in the epilogue, the program regen-
erates the modifier (@, ®) and executes an aut instruction to
authenticate return address (®). If the return address is modified
by an attacker, the authentication will fail. Subsequently, a PAC
comparison failure leads to program termination. It is noteworthy
that not all returns need to be authenticated. For instance, in a
leaf function, the value of ra register is not saved into the stack.
Therefore, the program only executes RAA instructions when the
ra register is pushed into or restored from the stack rather than
emitting instructions in all returns.

4.4 Customized Coprocessor

In order to support the abovementioned RAA instructions, we
design a coprocessor to handle our custom instructions. The copro-
cessor can assist a general-purpose processor in dealing with the
processing work that can be offloaded. Our coprocessor consists of
two modules: the encryption module and the control module. The
control module controls the processing of the coprocessor, and the
encryption module is responsible for encrypting and generating
PACs. Figure 3 shows the Finite-State Machine (FSM) of the copro-
cessor, which includes 5 states: idle, data-in, pac, aut and last.

Figure 3: Finite-State Machine to Handle pac and aut.

ins.funct = 0 out.ready

encryption vaild

ins.valid

ins.funct = 1 out.ready

encryption vaild

(1) idle. The state is initiated to idle in the beginning. It stays
idle until the main processor sends the custom instructions
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to the coprocessor. Then the coprocessor changes the state
to data-in, which means preparing data for encryption.
data-in. In this state, the control module accepts a 64-bit
return address, a 128-bit key, and a 64-bit modifier in the
registers and sends them to the encryption module. The en-
cryption module sends ciphertext back to the control module
and generates a valid signal when finished. In RISC-V instruc-
tions, the funct7 and funct3 fields combined with opcode
describe what operation to perform. The instruction format
of pac and aut are designed with the same opcode and dif-
ferent funct7 filed. When the encryption signal is valid, the
state changes to pac or aut according to the funct7 field of
the instruction, which selects the type of operation.

(3) pac. In this state, the control module uses the 16 most sig-
nificant bits of the ciphertext as PAC and inserts it into the
unused bits of the return address. Subsequently, it writes the
return address with PAC back to the ra register.

(4) aut. In this state, the control module regenerates PAC and
verifies it. If the verification is successful, it removes the PAC
and returns normally. Otherwise, it triggers an interrupt.

(5) last. After that, the state changes to last, which waits until
the instruction is written back.

5 Implementation

5.1 Complier Integration

We integrate RETTAG into the latest version of the mainstream
compiler GCC [3] and LLVM [29] to build the RETTAG-enhanced
compiler. We add new passes to the optimizer and RISC-V backend
to recognize and emit RAA instructions.

5.1.1 GCC Compiler Backend We add a new RTL pass and modify
the pass that expands the prologue and epilogue patterns to emit
RAA instructions automatically. Moreover, we add the correspond-
ing machine description to guide RAA instructions generation.
Moreover, we use a pseudo-random, non-repetitive sequence to
generate unique function-specific ids during compile time.

5.1.2  LLVM Compiler Backend We insert RAA instructions in the
function prologue and epilogue similar to the GCC compiler back-
end by using software APIs (i.e., IRBUILDER and BUILDMI) in frame
lowering. The frame lowering is an interface that describes the
layout of a stack frame on the target machine. We modify it to emit
RAA instructions for authenticating return addresses. Additionally,
some technologies (e.g., [27]) use the id of function prototypes as
the modifier in the implementation (by calling getType !), which
leads to duplicated modifiers in different function instances with
the same function prototype. We improve the modifier generation
process by calling getFunctionNumber that returns a unique id for
the current function.

5.2 Hardware Extension

We develop a full-system FPGA prototype based on the Rocket-
chip [7], which generates RISC-V Rocket core [5], a 64-bit 5-stage in-
order synthesizable core. We use Chisel [8] Hardware Description
Language (HDL) to configure the Rocket core [5] and customize a
coprocessor consisting of control and encryption modules. Similar

!https://github.com/pointer-authentication/parts-llvm/blob/master



Table 1: The RIPE Test Suite [42] on RISC-V. In our evaluation, we perform various tests, including stack overflow, ROP gadget ,and ret2lib
gadget. The results show that attacks are detected by RETTAG.

Attack Dimensions  Attack Variant Simple Description
stack
. heap The attack location describes the memory
Attack Location
bss section in which the buffer to be overflowed.

data segment

Target Code Pointer  return address

The target code pointer describes the code pointer to redirect towards the attack code.

return-into-libc

Redirecting the target pointer to the entry point of an otherwise inaccessible function.

Attack Code ROP Redirecting the PC to an illegal jump target.
shellcode Performing a similar transfer of control flow.
. indirect Overwriting a target pointer with an integer value.
Overflow Technique
direct Overwriting a pointer to the target with a pointer elsewhere in memory.
Function Abused memcpy The function abused describes the vulnerable functions.

to [21], Rocket Custom Coprocessor (RoCC) communicates with
Rocket core by RoCC interface. In addition,we choose AES128 [13]
for the PAC encryption. As a widely implemented block-cipher
encryption algorithm, AES performs well on a wide variety of
hardware. After receiving a 128-bit RAA key and a 128-bit plaintext
composed of a 64-bit return address and a 64-bit PA modifier, it
generates corresponding 128-bit ciphertext. We truncate the upper
16 bits of the ciphertext to be the PAC.

5.3 Bootloader

We modify the Berkeley Bootloader (BBL) to support the custom
instructions and RoCC interrupt. Specifically, we configure Machine
Status Register (mstatus) and Machine Interrupt Enable Register
(mie) to enable custom ISA and RoCC interrupt. Moreover, we add
an interrupt handler in the Linux kernel (for the FPGA) and Proxy
Kernel (PK) [4] (for the emulator) to terminate the process when
the PAC authentication fails.

6 Evaluation

In this section, we focus on evaluating the security provided by RET-

Tag and its performance overhead and resource cost. We address

three questions in this section:

e RQ1. Can RETTAG protect the return address integrity against
tested buffer-overflow attacks?

e RQ2.Is it low-cost and lightweight on hardware?

e RQ3. How about the performance overhead?

6.1 Security Analysis

Benchmark We perform the security analysis on the RIPE test
suite [42]. RIPE is a benchmark that comprises various buffer-
overflow attacks, including code injection, return-to-libc ,and ROP
attacks. By performing a wide range of buffer-overflow attacks and
recording their success or failure, this benchmark can be used to
quantify the protection coverage of the defense technology, which
is suitable to evaluate the security provided by RETTAG.

Configuration We run the test suite on the Rocket emulator run-
ning on Ubuntu 18. We use the PK to host statically-linked RISC-V
ELF binaries, using BBL to boot up. All programs are built using
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Table 2: Hardware Resource Cost of RETTAG.

Whole Systems Rocket Cores
LUT  Slice Registers ~ LUT  Slice Registers
Without RETTAG 58,483 29,351 31,993 14,028
With RETTAG 59,213 30,015 32,744 14,691
% +0.8% +0.16% +0.37% +0.16%

LLVM 11.0 for the RV64GX (G for the general combination of stan-
dard instructions and X for customized instructions) architecture.
Results We implement the combinatorial set of buffer overflow
attack forms built on four locations of buffers in memory, one tar-
get code pointers (i.e., return address), two overflow techniques,
three variants of attack code being executed, and one function
being abused. Table 1 shows the results of the experiments. We
perform various attacks that corrupt return addresses in RIPE. The
results show that all attacks, which can be recurred on the RISC-V
platform, are detected and resisted successfully by RETTac. We
can conclude that RETTAG is capable of defending ROP attacks by
enforcing return address integrity. Some attacks targeting other
code pointers (e.g., function pointers) in the RIPE test suite can
bypass the proposed protection mechanism. Moreover, we do not
consider non-control data attacks, such as Data-oriented Program-
ming (DOP) attacks, which can influence program behavior without
modifying code pointers. Although RETTAG can’t defend against
these attacks currently, we can extend protection all code and data
pointers with more instrumentation in future work.

6.2 Hardware Resource Cost

Configuration To evaluate the hardware resource cost of RETTAG,
we instantiate the original and the modified RISC-V Rocket Cores
and synthesize them on the Xilinx Kintex-7 FPGA KC705 evaluation
board using Vivado 2018.3. RETTAG is configured with a 16KiB 4-
way L1 instruction cache, a 16KiB 4-way L1 data cache, a 32-entry
instruction TLB, and a 32-entry data TLB. Moreover, we integrate
the above Rocket Cores with a 1GiB DDR3 and a 128KiB boot ROM.
Results Table 2 shows the hardware resource cost of systems with-
out and with RETTAG. Whole Systems refer to the hardware resource
cost of whole systems with a Rocket Core and peripherals. Rocket
Cores refer to the hardware resource cost of the out-of-context



synthesis of Rocket Cores. Table 2 shows the utilization percentage
for slice look up tables (LUT) and slice registers. The number of
extra slice LUTs and slice registers are 0.8% and 0.16% in the Whole
Systems, 0.37% and 0.16% in the RISC-V Rocket Cores. The result
shows the hardware resource cost of RETTAG is low (less than 0.8%),
which indicates RETTAG is adaptable for real-world systems.

6.3 Performance Overhead

Benchmark We perform performance analysis on NBench [32]
and CoreMark [2] benchmark. Specifically, NBench is a synthetic
computing benchmark used to measure a computer’s CPU, FPU and
memory system speed. This benchmark consists of ten different
tasks such as Huffman compression and LU decomposition. Core-
Mark is a sophisticated benchmark designed to test a processor
core’s functionality. Since these benchmarks are designed to eval-
uate the performance of a processor, we consider evaluating the
performance overhead introduced by RETTAG on them.
Configuration We tested benchmarks on the Xilinx Kintex-7 FPGA
KC705 evaluation board with Linux 4.20.0. The system has 1GiB
memory provided by a Micro SD Card installed on our FPGA board.
All the benchmarks are compiled and instrumented by LLVM 11.0
for RV64GX architecture, and all programs are statically linked. We
ran each benchmark 10 times.

Results Figure 4 shows the performance overhead of RETTAG on
NBench. The baseline is the result of the benchmark without RET-
Tag (i.e., the program is not be instrumented). In Figure 4, the
baseline is standardized as 1, and we can find that the performance
overhead introduced byRETTAG is around —0.66% to 1.10%. Since
there are fluctuations in the running environment, there may be
some imprecision of the performance overhead. The average per-
formance overhead of RETTAG on NBench is 0.11%. Thus, it is a
negligible performance overhead for RETTAG on NBench. The aver-
age performance overhead of RETTAG on Coremark is 7.69%.

To further understand the performance overhead introduced by
RETTAG, we discuss it in detail. The performance of RETTAG mainly
depends on two factors: 1) the CPU cycles of pac/aut instructions,
2) the ratio of instrumented custom instructions.

CPU Cycles Since the performance is impacted by the encryption
module , we calculate additional CPU cycles that RETTAG intro-
duced to a protected function. In RETTAG, we insert a sequence
of lui,addi,slli,add,pac/aut instructions to get the current
function-id and stack pointer value and generate or authenticate
PAC, etc. By observing the waveform, we calculate that the overall
process needs 57 cycles. The CPU cycles of pac/aut are heavily
affected by the encryption module. Currently, we choose AES128
to generate PACs in the implementation, which consumes more
than 20 cycles for encryption. If we use a faster hardware encryp-
tion module, the number of CPU cycles will be significantly de-
creased. Consequently, we assume that the PAC is computable with
an approximate overhead of 4 cycles like [27] and reevaluate the
performance based on it. We rerun the Coremark benchmark and
find that the CPU cycles of instrumented custom instructions for
each function are decreased from 57 cycles to 12 cycles, and the
performance overhead introduced by RETTAG is 7.69% to 3.42%.

Ratio Furthermore, the number of function calls and the number
of instructions in the function also affect the performance. Table 3
shows the number of instructions executed in the benchmark and
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Figure 4: Performance Overhead of RETTAG on NBench.

Table 3: Number of Executed Instructions in Benchmarks with

REeTTAG.
Benchmarks All Instructions Instrumented Ins Ratio
NBench 256,101,997,912 13,916,804 0.005%
Coremark 19,225,103,401 870,957,759 4.530%

the number of instructions added by RETTAG The table indicates
that the ratio of instrumented instructions on NBench is less than
0.01%, while around 4.530% on Coremark. That is the reason why
RETTAG introduces 0.11% performance overhead on the NBench
while incurring 7.69% on the Coremark. Since we only insert a fixed
amount of custom instructions (i.e., 57 cycles) at the beginning and
the end of a function in RETTAG, the performance also depends
on the number of instructions in that function. For example, in
a function with 1,000 instructions, the slowdown caused by the
inserted instructions would be negligible. Note that the loops and
code reuse make the actual number of executed instructions much
more than that in the binary. Additionally, not every function needs
to add and verify PAC; some functions (e.g., leaf nodes) do not
contain epilogue such as exit(@). Thus, the ratio of instrumented
custom instructions will be lower.

Conclusion. According to the results and analysis, we can con-
clude that RETTAG introduces around 0.11% to 7.69% performance
overhead depending on the ratio of instrumented custom instruc-
tions. The runtime overhead of RETTAG is reasonable. It incurs a
negligible overhead when using the hardware encryption module.

7 Conclusion and Future Work

In this paper, we present RETTAG, a hardware-assisted defense
scheme against return address hijacking on RISC-V. Specifically,
we use PAC embedded into the unused bits of a pointer to achieve
return address integrity, and we demonstrate that RETTAG can effi-
ciently protect function return addresses on the stack. We integrate
RETTAG into the mainstream compilers and implement a prototype
on the Rocket emulator and FPGA development board. The evalua-
tion result shows that RETTAG prevents an array of memory attacks
on RISC-V platform with a reasonable performance overhead.

Utilizing the unused bits of a pointer to enhance security or
improve performance is promising. There are still unused bits in
Sv39 after deploying the proposed protection mechanism, and the
size of the PAC can be dynamically adjusted depending on the
memory addressing scheme and security features. We will use the
remaining unused bits to improve the performance of Dynamic
Taint Analysis (DTA) [33] technique. We intend to utilize the unused
bits to store the taint tag and accelerate taint propagation.
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